Australia’s Cocos Islands strewn with 414 million pieces of plastic pollution.

Plastic pollution engulfs ‘paradise’ island. Scientists estimated that the beaches of Australia’s Cocos (Keeling) Islands are strewn with around 414 million pieces of plastic pollution. They believe some 93% of it lies buried under the sand, say the researchers.  Close to a million plastic shoes, mainly flip flops are among the torrent of debris washed up on an “unspoilt paradise” in the Indian Ocean.

They are concerned that the scale of concealed plastic debris is being underestimated worldwide.

Nearly half the plastic manufactured since the product was developed six decades ago has been made in the past 13 years, say scientists.

Through failings in waste management, much of it has ended up in the oceans. One estimate suggests that there are now more pieces of plastic in the seas than there are stars in the Milky Way.

mapImage copyright SCIENTIFIC REPORTS
Image caption The location of the Cocos (Keeling) Islands

This latest assessment will add to the feeling that the world hasn’t yet fully appreciated the scale of the problem.

The research team surveyed the Cocos (Keeling) Islands, a horseshoe chain of 26 small land masses 2,100km north-west of Australia. Around 600 people live in these remote places, which are sometimes described as “Australia’s last unspoilt paradise”.

Researchers found that oceanic currents are depositing huge amounts of plastic pollution on the beaches of these atolls. They calculated that the islands are littered with 238 tonnes of plastic, including 977,000 plastic shoes and 373,000 toothbrushes. These were among the identifiable elements in an estimated 414 million pieces of debris.

The scientists believe their overall finding is conservative, as they weren’t able to access some beaches known to be hotspots of pollution.Debris on Cocos

Image copyright SILKE STUCKENBROCK

Buried/concealed plastic

Of particular concern to the authors of the report is the amount of material they believe is buried up to 10cm below the surface. This accounted for around 93% of the estimated volume.

The lead author Jennifer Lavers told BBC News that, based on what she had seen on the Cocos Islands and what she has found previously on another remote island called Henderson in the Pacific, the world has “drastically underestimated” the scale of this problem.

The finding may also help explain a significant gap in our understanding of plastic pollution.

“Over the years, over the decades, we know how much plastic we put out into the ocean. But when we’ve done some sampling to try and figure out how much is floating in the surface layers and things like that, there actually seems to be a bit of a mismatch between what we think we’ve put out there, and what we find,” said Dr Lavers, from the Institute for Marine and Antarctic Studies at the University of Tasmania.

“So there’s this missing plastic where we don’t actually know where it’s gone. So for me, when I found out that so much of the debris on Cocos was buried, I had a little kind of a light bulb moment where I thought, perhaps this is one of the missing pieces of the puzzle.”

Cocos
Dr Jennifer Lavers and some of the plastic pollution items gathered on Cocos island
Image copyright SILKE STUCKENBROCK
 

 

Valiant attempts to clean up beaches by volunteers are literally, scratching the surface of the problem. Researchers are concerned that this wealth of buried plastic could threaten wildlife living or nesting in beach sediments, such as sea turtles and crustaceans.

“It wasn’t a huge surprise to me, it’s simply that the surveys done up until now have looked at the surface and it’s obviously a lot of time and effort to dig deeper,” said Dr Chris Tuckett, from the Marine Conservation Society, who wasn’t involved with the study.

“Plastic obviously breaks down into smaller pieces over time and smaller pieces will sink through the sand and settle in sub-surface layers. In hot regions, the combination of warm temperatures and high salinity is likely to make plastic items break up into pieces more quickly, although it won’t disappear entirely.”

Attempts to clear this concealed plastic would require major mechanical disturbance which might prove even more damaging to wildlife.

Reducing plastic use

The lead author hopes that her findings will bring home to people that prevention is far better than cure when it comes to plastic pollution.

“My hope is that the Cocos provide an opportunity for people to kind of see themselves in the debris on the beach, and feel that sense of connection or ownership and realise that if they changed their behaviour, their consumption patterns, if they kind of fought for policy or legislation, if they went out and helped their neighbour, they could potentially have a beneficial flow on effects.”

Dr Lavers says she has avoided plastic in her own life for the past 10 years.

“In a decade, I’ve never used a plastic toothbrush, I don’t use plastic bags of any shape, size, denomination or source. I don’t do any of these things. And yet, it’s no longer a conscious decision. It’s just part of my day to day life. It’s just who I am.

“It’s like quitting smoking. At first, it’s hard, and you have to think about it. But then you don’t think about it anymore. It’s just part of your day-to-day actions. You just don’t smoke anymore. I just don’t use plastic anymore. I just don’t.”

The new study has been published in the journal Scientific Reports.

May 16, 2019

Plastic pollution: Flip-flop tide engulfs ‘paradise’ island

 

Plastic Pollution Harms Ocean Bacteria That Produce 10 Percent of Earth’s Oxygen

“We found that exposure to chemicals leaching from plastic pollution interfered with the growth, photosynthesis and oxygen production of Prochlorococcus, the ocean’s most abundant photosynthetic bacteria,” lead study author and Macquarie University researcher Dr. Sasha Tetu said in a Macquarie University press release.

The tests were done in a laboratory setting, which means the researchers do not yet know if plastics are currently harming the bacteria in the environment.

“Now we’d like to explore if plastic pollution is having the same impact on these microbes in the ocean,” Tetu said.

Children swims in the sea full of garbage in North Jakarta, Indonesia. Getty (left)

  

 

 

 

 

 

Children collect plastic water bottles among the garbage washed ashore at the Manila Bay. AFP/Getty (right) 

 

 

 

 

 

A man climbs down to a garbage filled river in Manila. AFP/Getty (left)

 

The study is the first of its kind to look at the potential impacts of plastic on this vital ocean bacteria, which, in addition to producing oxygen, are an essential part of the marine food web. Researchers assessed two strains of Prochlorococcus common at different depths of the ocean. They exposed the strains to chemicals leached from plastic bags and PCV matting. The chemicals had a noted impact on the bacteria, impairing their growth and the amount of oxygen they produced, as well as altering their gene expression.

“This study revealed a new and unanticipated danger of plastic pollution,” paper co-author and Macquarie University Research Fellow Lisa Moore told The Independent.

“We found that exposure to chemicals leaching from plastic pollution interfered with the growth, photosynthesis and oxygen production of the ocean’s most abundant photosynthetic bacteria,” says lead author Dr Sasha Tetu.”

The researchers pointed to the importance of better understanding how plastic pollution impacts smaller organisms at the base of the food web.

“Our data shows that plastic pollution may have widespread ecosystem impacts beyond the known effects on macro-organisms, such as seabirds and turtles,” Tetu said in the university press release. “If we truly want to understand the full impact of plastic pollution in the marine environment and find ways to mitigate it, we need to consider its impact on key microbial groups, including photosynthetic microbes.”

Moore told The Independent how plastic might impact these microbes and the environment that depends on them going forward:

“If management of plastic waste is left unattended, prochlorococcus populations could decrease in some locations, which could affect the other organisms that depend on prochlorococcus for food,” Dr. Moore said.

“It is possible that some prochlorococcus are already affected when in close proximity to plastics.

“However, it would be decades before enough plastics build up in the oceans to affect prochlorococcus populations on a global scale.”

If the current rate of plastic pollution continues unchecked, there will be more plastic than fish in the ocean by 2050.

FEATURED IMAGE: The game where one has to guess how many jelly beans or marbles can fill a jar should never be played with the cyanobacterium Prochlorococcus. By some estimates, in a single liter of water as many as 100 million cells of this tiny bacterium can be found. These important organisms serve as the base of the ocean food chain and are thought to be responsible for providing up to 20% of the oxygen produced by the planet each year.  AFP/Getty

By Olivia Rosane, EcoWatch

Plastic Threatens Human Health at a Global Scale

Washington, DC—A new report released February 19, 2019 reveals that plastic is a human health crisis hiding in plain sight. Plastic & Health: The Hidden Costs of a Plastic Planet brings together research that exposes the distinct toxic risks plastic poses to human health at every stage of the plastic lifecycle, from extraction of fossil fuels, to consumer use, to disposal and beyond. It was authored by the Center for International Environmental Law (CIEL), Earthworks, Global Alliance for Incinerator Alternatives (GAIA), Healthy Babies Bright Futures (HBBF), IPEN, Texas Environmental Justice Advocacy Services (t.e.j.a.s.), University of Exeter, and UPSTREAM,

To date, research into the human health impacts of plastic have focused narrowly on specific moments in the plastic lifecycle, often on single products, processes, or exposure pathways. This approach fails to recognize that significant, complex, and intersecting human health impacts occur at every stage of the plastic lifecycle: from wellhead to refinery, from store shelves to human bodies, and from waste management to ongoing impacts of microplastics in the air, water, and soil. Plastic & Health presents the full panorama of human health impacts of plastic and counsels that any solution to the plastic crisis must address the full lifecycle.

According to the report, uncertainties and knowledge gaps often impede regulation and the ability of consumers, communities, and policymakers to make informed decisions. However, the full scale of health impacts throughout plastic’s lifecycle are overwhelming and warrant a precautionary approach.

Full report here. Executive summary here.

KEY FINDINGS

Plastic requires a lifecycle approach. The narrow approaches to assessing and addressing plastic impacts to date are inadequate and inappropriate. Making informed decisions that address plastic risks demands a full lifecycle approach to understand the full scope of its toxic impacts on human health. Likewise, reducing toxic exposure to plastic will require a variety of solutions and options because plastic has a complex lifecycle with a diverse universe of actors.

At every stage of its lifecycle, plastic poses distinct risks to human health, arising from both exposure to plastic particles themselves and associated chemicals. People worldwide are exposed at multiple stages of this lifecycle.

  • Extraction and transportation of fossil feedstocks for plastic, which releases an array of toxic substances into the air and water, including those with known health impacts like cancer, neurotoxicity, reproductive and developmental toxicity, and impairment of the immune system;
  • Refining and production of plastic resins and additives, which releases carcinogenic and other highly toxic substances into the air, with effects including impairment of the nervous system, reproductive and developmental problems, cancer, leukemia, and genetic impacts like low birth weight;
  • Consumer products and packaging, which can lead to ingestion and/or inhalation of microplastic particles and hundreds of toxic substances;
  • Plastic waste management, especially “waste-to-energy” and other forms of incineration, releases toxic substances including heavy metals such as lead and mercury, acid gases and particulate matter, which can enter air, water, and soil causing both direct and indirect health risks for workers and nearby communities;
  • Fragmenting and microplastics, which enter the human body directly and lead to an array of health impacts (including inflammation, genotoxicity, oxidative stress, apoptosis, and necrosis) that are linked to negative health outcomes ranging from cardiovascular disease to cancer and autoimmune conditions;
  • Cascading exposure as plastic degrades, which further leach toxic chemicals concentrated in plastic into the environment and human bodies; and
  • Ongoing environmental exposures as plastic contaminates and accumulates in food chains through agricultural soils, terrestrial and aquatic food chains, and the water supply, creating new opportunities for human exposure.

READ FULL REPORT AT: Plastic Threatens Human Health at a Global Scale – New Report

February 19, 2019

Invasion of the biosphere by plastics: What our current knowledge may mean for our future

In 1974, a member of the Council of the British Plastics Federation and a fellow of the Plastics Institute, stated that “Plastics litter is a very small proportion of all litter and causes no harm to the environment except as an eyesore”(Derraik, 2002). It has taken less than fifty years for that opinion to be completely discredited, indeed, that opinion was already in doubt the moment it was stated. Nevertheless, it was the strong denial by the plastic industry that plastics could cause harm that delayed the study of plastic’s environmental effects for decades. Not until Moore et al. (2001) found six times as much plastic as zooplankton by weight in the surface waters of the North Pacific Subtropical Gyre (NPSG), did plastic environmental pollution begin to receive increasing attention by scientists, policy makers, regulators, and the media, who began referring to the area as “The Great Pacific Garbage Patch”, a term coined by an oceanographer, Curtis Ebbesmeyer (Ebbesmeyer and Scigliano, 2009). Today it is widely acknowledged that vagrant plastic waste is polluting oceans, rivers, soil, food, the water we consume, and even the air we breathe. The invasion of this synthetic waste into organisms is facilitated by the fact that with surface ablation and disintegration mechanisms over time, micro- and nano- sized synthetic polymers are created that can be readily assimilated into living organisms. Recent studies reveal that these micro- and nano- scale polymers, which sorb and desorb pollutants, can pass through the intestinal wall and from the lungs to the circulatory system and in contact with human cells produce reactive oxygen species (ROS), which are implicated in many pathologies (Schirinzi et al., 2017). As primarily a marine scientist, I focus on the threats to marine ecosystems, but the topic of plastic pollution has grown to global proportions affecting not only the biosphere, but geological formations as well. Here I present a summary of the work done to date to understand our situation and discuss briefly the future of plastic pollution.

Use of plastic in construction of natural structures:

(1) As early as 1973, Kartar et al. (1973) reported polychaetes in the Severn estuary incorporating plastic pellets into their dwelling tubes.

(2) I have observed nests of birds and rodents with plastic as a nest building material.

(3) MacIvor and Moore (2013) found bees constructing brood cells with bits of plastic bags and polyurethane sealant.

(4) Reichert et al. (2018) found that reef building corals built their bodies around adhering plastic particles.

(5) Corcoran et al. (2014) identified in Hawaii “…the appearance of a new ‘stone’ formed through intermingling of melted plastic, beach sediment, basaltic lava fragments, and organic debris…which could be preserved by burying in marine sediments and signals…the occurrence of the informal Anthropocene epoch”.

(6) Beach sands are increasing the percentage of microplastics incorporated and the speculation by Gregory (1977) that mankind will sunbathe on plastic sand beaches is becoming a reality.

Use of plastic as an aid in reproduction and range extension for organisms:

(1) Gregory (2009) called out “alien invasions” on plastic: “Dispersal of aggressive alien and invasive species…could endanger sensitive, or at-risk coastal environments (both marine and terrestrial) far from their native habitats.”

(2) Zettler et al. (2013) found that these invaders were composed of unique communities that: “…are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean”.

(3) Goldstein et al. (2012) found that floating plastic in the NPSG… “released the pelagic insect Halobates sericeus from substrate limitation for oviposition. High concentrations of microplastic in the NPSG resulted in a positive correlation between H. sericeus and microplastic, and an overall increase in H. sericeus egg densities.”

(4) In a survey of benthic plastic, Gündoğdu et al. (2017) stated: “plastic debris as a substrate can contain a very high diversity of life just like natural substrates”. And for organisms on surface plastics, Goldstein et al. (2014) observed that: “diversity patterns on plastic debris are compatible with the concept of island biogeography”.

Given these findings, it seems logical to conclude that an increase in plastic “islands” would correspond to an increase in associated populations of organisms adapted to the introduced plastic habitat, and if in an area of limited food resources, that there would be a decrease of certain members of the indigenous population. As in any major ecosystem disruption, there will be winners and losers. In the marine environment of the depauperate gyres, where floating plastics accumulate, winners are likely to be epibionts and losers true pelagics. In the area where I work, the NPSG, I have noticed fewer salps as the number of barnacles on marine debris increases.

Ingestion of plastic by organisms:

(1) Plastic ingestion by marine megafauna (Germanov et al., 2018), fishes (Boerger et al., 2010Lusher et al., 2013Rochman et al., 2015), birds (Robards, 1993Moser and Lee, 1992van Franeker et al., 2011), jellyfish (Macali et al., 2018), marine worms (Browne et al., 2013), bivalves, corals (that have been said to find the plastic “tasty”), and zooplankton, point to the ability of synthetic polymers to mimic natural food throughout the entire food web, even in terrestrial soils, where Zhu et al. (2018) found that a common soil arthropod consumed plastic, which perturbed their gut microbiota. Plastic “food” does not provide nutrients, or decompose in the digestive tract. Rather it blocks passages, delivers pollutants and damages the epithelial lining.

(2) Plastic in its most insidious form is micro and nano sized; whether formed purposely for commerce or through the wearing and weathering of larger objects. At these size classes it has been shown to enter the brain of fishes and the physical features of the particles themselves cause more damage than the associated pollutants (Mattsson et al., 2017). The authors noted physiological and behavioral changes in the fish: less water than normal in the brain, less time feeding and less distance covered looking for food.

(3) Small plastic fibers and fragments are being ingested by humans in salt from different countries (Karami et al., 2017), in all types of water tested (Schymanski et al., 2018), and through respiration by humans, causing an inflammatory response and lesions in human cells (Prata, 2018). Catarino et al. (2018) stated that: “Our predictions of microplastics ingestion by humans via consumption of mussels is 123 particles every year for each person in the UK and can go up to 4 620 particles every year for each person in countries with a higher shellfish consumption. By comparison, the risk of plastic ingestion via mussel consumption is minimal when compared to fibre exposure during a meal via dust fallout in a household (13 731–68 415 particles every year for each person).”

Physiologists are beginning to assess the health impacts to humans and other animals caused by ingestion of micro- and nano- plastics, their two major lines of inquiry may be categorized as:

(1) Kinetics—how does the plastic get into organisms and where will it go?

(2) Effects—what will the plastic and associated toxicants do once assimilated into an organism?

These criteria are used in a request for proposals by the Dutch government, which has put up a million Euros to study human health impacts of plastics.

In Greek mythology, Zeus, king of the gods, created the first woman on earth, Pandora, in order to deliver a punishment to the first men for having obtained fire stolen from the gods. Pandora was made to be beautiful so that her delivery of the god’s punishment to mankind in a sealed earthen jar would not raise an alarm. Pandora did not know there was anything dangerous in the jar, and though she had been warned to never open it, her curiosity overcame her, and when all around her were asleep, she opened it. Out flew “the thousand natural shocks that flesh is heir to” (Hamlet, Act III, Scene 1). When she saw what she had done and felt the stings of bugs she released, she attempted to put the troubles back in the jar without success. Plastics, like fire, confer innumerable opportunities for mankind, but mankind has not kept shut the jar containing plastic waste, and it is now impossible to retrieve it. The set of troubles caused by plastic waste is of a magnitude to affect essential planetary systems such as water, air and soil.

Dust and marine sediments were formerly of mineral origin and settled out of air and water or were removed through the action of natural barriers and other mechanisms. Plastic has characteristics that vary widely depending on type of polymer, but many plastics become neutrally buoyant, yet sediment-like and proliferate at different levels in the water column in complex ways, and their similarity to natural fibers allows them to occupy environmental niches formerly occupied by natural, biodegradable materials. The dictum that “in ecosystems, nothing is wasted” is challenged by synthetic polymers. Plastic waste accumulates and becomes more than ecosystems can process. This situation has been conceived of as the crossing of a “planetary boundary”. Three criteria are used to determine if plastic pollution is a planetary boundary threat: Is it poorly reversible? Are there effects only visible at a planetary scale? Is there a disruptive effect on Earth-system processes?

Criteria 1 has clearly been met. It will be impossible to remove plastic waste from most niches of the environment.

Criteria 2: Villarrubia-Gómez et al. (2017) state: “…despite the fragmented state of current evidence, the mismanagement of discarded plastic is already implicated in globally systemic alteration to food webs, habitats, and biogeochemical flows”. If it is not clear that criteria 2 has already been met, it shortly will be. In my own research, I have identified large areas of the ocean where surface plastics outweigh and in some cases outnumber the associated zooplankton (Moore et al., 2001).

Criteria 3: While most investigators believe that this question remains to be answered, and their focus is mainly on how ocean plastics retard carbon sequestration (Villarrubia-Gómez et al., 2017), I believe there is enough evidence from widely diverse sources to make the claim that the fitness of earth’s biology as a whole is negatively affected by plastics and their associated chemicals. I believe that there are only negative consequences of plastic ingestion, that it is occurring on a planetary scale, and that it is rapidly increasing. Curtis Ebbesmeyer has termed ocean plastic pollution, “the greatest infection of the sea”, and plastic pollution of air and fresh water threatens the circular loop of the water cycle as a clean source for drinking.

Over a decade ago, it was recognized at a conference where I presented, held by the World Federation of Scientists in Erice, Sicily, that the pollution of water by plastic was a planetary emergency. During that conference, I was able to enlist an editor of the Philosophical Transactions of the Royal Society to devote an issue to the problem. I was one of the editors of “Our Plastic Age”, along with Richard Thompson, Fred vom Saal and Shanna Swan (Thompson et al., 2009). We were able to publish the first connection between chemicals sorbed to plastics and their transmission to wildlife (Teuten et al., 2009). Vagrant plastics may not be the main link in the transfer of manmade toxicants to biological systems, but their role is ever increasing.

The timid response to this planetary emergency caused by misuse of what I term “the solid phase of petroleum” is in part due to the adoption of petroleum industry tactics by the plastics industry. In papers quantifying plastic entering the environment, “leakage” is a term often used. Although plastic is a solid, it can spill (Webster definition: to cause or allow accidentally or unintentionally to fall, flow, or run out so as to be lost or wasted). Industries’ modus operandi is to spillstudy and stall. Compared to the petroleum industry, the plastic industry has done little to study the problem of plastic waste, preferring to put the blame on consumers for irresponsible disposal, and the cost of research and cleanup is borne by both governmental and non-governmental institutions and society at large. Industry lobbyists have spent millions of dollars to stall proposed remedies such as carrier bag bans. Industry has not, however, resisted the regulating of plastic pellet loss from factories in the State of California, acknowledging the loss of virgin polymer feedstock as their “personal responsibility problem”. Thus, based on my research funded by the California Water Resources Control Board to find how much of this plastic industry feedstock was lost to the aquatic environment; we were able to pass legislation to make their discharge illegal in California. As with most regulations, enforcement lags behind legislation.

Natural disasters such as floods, hurricanes and tsunamis also release millions of tons of plastic into the environment. If plastic were liquid petroleum, technologies would be deployed to retrieve the material after a disaster, but no laws or regulations mandate such a response for plastic, even though plastic will persist far longer in the environment than petroleum, and potentially cause more harm over time.

Part of the problem with our response to the plastic pollution crisis is the unrealistic assessment of possibilities by researchers themselves. In a paper titled “Global research priorities to mitigate plastic pollution impacts on marine wildlife”, Vegter et al. (2014) concludes by saying: “Although there are still many questions surrounding the issue, the numerous negative impacts of plastic pollution make it clear that we must strive to reduce the amount of plastics reaching our oceans. If the methods for doing so are attainable (e.g., reducing plastic use, improvements in waste management, better access to recycling) and the costs are non-prohibitive, it would be feasible to deal with what is ultimately an entirely avoidable problem.” It seems that at just this point, the scientists stop being objective and revert to fantasy. On a global scale, there is no evidence that the methods enumerated for reducing the amount of plastics entering the ocean are attainable. Plastic use will surge with 3-D printing of everything imaginable, recycling costs are prohibitive and the fraction of plastic waste recycled globally remains under 10%. Waste management is focused globally on incineration and landfilling, both of which create greenhouse gasses and waste the billions of dollars spent on the fabrication of valuable commodities from plastic feedstocks. Given the difficulty of capturing ubiquitous plastic of all types and sizes from earth orbit to the ocean depths, I ask: In what fantasy universe is plastic pollution “an entirely avoidable problem”?

In the Greek myth, Pandora, after releasing the world’s torments, tried to put the lid back on the jar where they were once contained, but she failed. As she sat crying, one last creature flew out. Zeus had sent Hope to compensate mankind for its perpetual struggle. While there may be no hope of cleaning plastic from the environment in the foreseeable future, there is hope that mankind can respect and fear plastic enough to treat it with great care, by designing products and creating take-back infrastructure that makes plastic benign. It is difficult to imagine this, however, in a world where plastic is the omnipresent facilitator of global trade by packaging commodities in a vapor and moisture barrier, preserving “newness”. But when the wrapper is ripped off, it becomes useless, and for many of the products it contains, the newness quickly fades, and they are replaced sooner rather than later. Hope seems a weak ally in the fight against the plastic plague overtaking our precious ocean, our land, our air, our water, and even the space around us with millions of waste plastics in earth orbit. The only ally powerful enough to push back against the “Plastic Attack”, is us, all of us, and it will require that we fear plastic sufficiently to demand reduction in its use drastically. That fear will only come when plastic’s dangers are widely exposed. Scientists are helping in this effort, as nature herself begins to spew plastic vomit worldwide. A world economy dependent on making and reproducing persistent, destructive and unrecoverable waste en masse is in no sense, sustainable.

Feature Image: Captain Charles Moore

By Charles Moore, Algalita Marine Research and Education

May, 2019

http://aos.manuscripts.cn/article/id/38c58896-6bed-4363-8e90-4947559abe45?pageType=en

Alarm as study shows how microplastics are blown across the world 

Microplastics are raining down on even remote mountaintops, a new study has revealed, with winds having the capacity to carry the pollution “anywhere and everywhere”.

The scientists were astounded by the quantities of microplastic falling from the sky in a supposedly pristine place such as the French stretch of the Pyrenees mountains. Researchers are now finding microplastics everywhere they look; in rivers, the deepest oceans and soils around the world.

Other recent studies have found microplastics in farmland soils near Shanghai, China, in the Galápagos Islands, a Unesco world heritage site, and in rivers in the Czech Republic. Humans and other animals are known to consume the tiny plastic particles via food and water, but the potential health effects on people and ecosystems are as yet unknown.

However the ubiquity of the pollution means it needs to be taken very seriously, said Steve Allen, at the EcoLab research institute near Toulouse and who led the new work in the Pyrenees: “If it is going to be a problem, it is going to be a very big problem. I don’t think there is an organism on Earth that is immune to this.”

About 335m tonnes of plastic is produced each year – while it degrades extremely slowly, it can be broken into smaller and smaller pieces. Microplastic pollution in rivers and oceans is now well known but just two previous studies have looked at its presence in the air, one in Paris, France, and another in Dongguan, China. Both found a steady fall of particles.

The new study, published in Nature Communications, is the first to show microplastic is raining down just as hard in remote environments and that it can travel across significant distances through wind. The team collected samples from high altitudes in the Pyrenees that were far from sources of plastic waste – the nearest village was 6km away, the nearest town 25km, and the nearest city 120km.

An inverse image of a plastic fibre. Microplastics can travel through the atmosphere and end up in regions far from their original emission source.
They found an average of 365 plastic particles, fibres and films were deposited per square metre every day. “It’s astounding and worrying that so many particles were found,” said Allen.

“It is comparable to what was found in the centre of Paris and Dongguan, and those are megacities where a lot of pollution is expected,” said Deonie Allen, also at EcoLab and part of the team. “Because we were on the top of a remote mountain, and there is no close source, there is the potential for microplastic to be anywhere and everywhere.”

 An inverse image of a plastic fibre. Microplastics can travel through the atmosphere and end up in regions far from their original emission source. Photograph: Allen et al/Nature

The most common microplastics found were polystyrene and polyethylene, both widely used in single-use packaging and plastic bags. The samples were collected during winter and it is possible that even more microplastic may fall in summer, when drier weather means particles are more easily lifted from the ground by the wind.

Microplastics have been shown to harm marine life when mistaken for food and were found inside every marine mammal studied in a recent UK survey. They were revealed in 2017 to have contaminated tap water around the worldand in October to have been consumed by people in Europe, Japan and Russia.

Many scientists are concerned about the potential health impacts of microplastics, which easily absorb toxic chemicals and can host harmful bacteria, with some even suggesting people are breathing the particles. The new research shows microplastics can remain airborne.

Professor Stefan Krause, at the University of Birmingham, UK, and not part of the team, said the new Pyrenees research was convincing: “These findings surely highlight the need for more detailed studies.”

“Frankly we are only at the start of understanding [microplastic pollution],” he said. Krause is leading a project called 100 Plastic Rivers which will produce the first systematic, global analysis of microplastics in freshwater ecosystems. He said the particles pose a range of potential dangers, from affecting soils and food production and carrying toxic chemicals and microbes far and wide.

Featured image: Scientists found that winds can carry plastic pollution ‘anywhere and everywhere’. Photograph: Teresa Short/Getty Images

 

By Damian Carrington, Environment editor, The Guardian,

April 15, 2019

https://www.theguardian.com/environment/2019/apr/15/winds-can-carry-microplastics-anywhere-and-everywhere?CMP=share_btn_fb&fbclid=IwAR2dX7xs6rzse7wIaZaMWJiQb3_ZhnDRCs9Yh-F5dXRiYY3-p1-t5Y9PiMg

Microplastics found in human stools for the first time in Austrian study

Study suggests microplastics may be widespread in the human food chain.

Microplastics have been found in human stools for the first time, according to a study suggesting the tiny particles may be widespread in the human food chain. The small study examined eight participants from Europe, Japan and Russia. All of their stool samples were found to contain microplastic particles.

Up to nine different plastics were found out of 10 varieties tested for, in particles of sizes ranging from 50 to 500 micrometres. Polypropylene and polyethylene terephthalate were the plastics most commonly found. On average, 20 particles of microplastic were found in each 10g of excreta. Microplastics are defined as particles of less than 5mm, with some created for use in products such as cosmetics but also by the breaking down of larger pieces of plastic, often in the sea.

Based on this study, the authors estimated that “more than 50% of the world population might have microplastics in their stools”, though they stressed the need for larger-scale studies to confirm this.

The Environment Agency Austria conducted the tests using a new procedure the researchers said shed fresh light on the extent of microplastics in the food chain. Samples from the eight subjects were sent to a laboratory in Vienna where they were analysed using a Fourier-transform infrared microspectrometer.

Philipp Schwabl, a researcher at the Medical University of Vienna who led the study, said: “This is the first study of its kind and confirms what we have long suspected, that plastics ultimately reach the human gut. Of particular concern is what this means to us, and especially patients with gastrointestinal diseases.”

Previous studies on fish have also found plastics in the gut. Microplastics have been found in bottled water and tap water around the world, in the oceans and in flying insects.  A recent investigation in Italy also found microplastics present in soft drinks. In birds, the ingestion of plastic has been found to remodel the tiny fingerlike projections inside the small intestine, disrupt iron absorption and add to stress on the liver.

“The smallest microplastic particles are capable of entering the bloodstream, the lymphatic system, and may even reach the liver,” said Schwabl, who will report on the study at UEG Week in Vienna on Tuesday. “Now that we have the first evidence for microplastics inside humans, we need further research to understand what this means for human health.”

Plastic particles in the gut could affect the digestive system’s immune response or could aid the transmission of toxic chemicals and pathogens, the researchers said.

The sources of the plastic found in the stool samples is unknown. The people studied kept a food diary that showed they were all exposed to plastics by consuming food wrapped in plastic or drinking from plastic bottles. None of those participating in the study were vegetarians, and six of the group ate sea fish.

Scientists still know little about the effects of microplastics once they enter the human body, though many studies have already found them present in foods such as fish that people are likely to eat. The UK government has launched a study of health impacts. . .

 

By Fiona Harvey and Jonathan Watts, The Guardian

October 22, 2018

https://www.theguardian.com/environment/2018/oct/22/microplastics-found-in-human-stools-for-the-first-time?CMP=fb_gu&fbclid=IwAR3Eep-zHg5r5s_XSIsbu7CWm838z-VJdADjwioQ8GqhughR4_J2SaWopHo

Microplastics found in Industrial Soft Drinks

In Italy, the first analysis carried out by Il Salvantente found microplastics in industrial soft drinks.

We live immersed in plastic. It can be found everywhere; we see it in the seas, dragged by the waters of our rivers, even scattered on mountain peaks or in the countryside that we still consider uncontaminated… Now we are beginning to realize that we eat and drink it. And we can do very little about that, if things do not change. In fact, what comes from our food, spices, water and, as shown by the first analysis carried out by Il Salvagente on 18 industrial beverages, from cola to orangeade, from lemonade to iced tea, we cannot see it with the naked eye nor can we avoid it.

The danger, in this case, has a specific name and a scientific definition, even though researchers and analysts have only recently started to look into it, and a level of risk that is still largely unknown. It is called microplastics, this is the definition of solid particles that are insoluble in water, even with dimensions that are much smaller than 5 millimetres. So small it is hardly distinguishable and perhaps for this very reason just as, if not more, insidious than the larger fragments from which it comes. Which, needless to say, are the most commonly used polymers, such as polyethylene, polypropylene, polystyrene, polyamide, polyethylene terephthalate, polyvinylchloride, acrylic, polymethyl acrylate.

For some years now, those who look for it, regardless of what they are analyzing, find it. It is found in the fish fillets we consume, where they accumulate in incredible quantities, in seafood, in sea salt, in bottled waterin water (from rivers and taps, even in mineral water). It is even present in products like honey.

It is inevitable, therefore, that it would also be detectable in the soft drinks that the monthly consumer guide magazine sent to the Maurizi Group laboratories. If anything, it is hardly surprising that none of the kinds of tea, cola, lemonade, orangeade, or tonic water under analysis were saved.

Microplastics are served (at the table and in your glass)

Seven Up, Pepsi, San Benedetto, Schweppes, Beltè, Coca-Cola, Fanta, Sprite are just some of the brands to end up under the microscope and – with a slight surprise – all gave an unambiguous response: the presence of microplastics has not spared any product, all 18 bottles were found to be contaminated, with values that ranged from a minimum of 0.89 mpp/l (microparticles per litre) to a maximum of 18.89 mpp/l.

. . .

A ‘vehicle’ for poisons

Seen from Brussels, for example, the question of plastic particles that we ingest is not considered as so worrying: “According to current knowledge, it is unlikely that ingestion of microplastics ‘per se’ is an objective risk to human health”, writes the European Union.

Seen from Helsinki, from the headquarters of the European Chemical Agency (the ECA), the perspective is different. “Some of the additives or organic contaminants that are added to plastics can be toxic”, the agency stated in black and white in a document a few months ago. And it is not just Finnish scientists to be concerned about this. There are numerous studies – all very recent, seeing that the issue is relatively new – that show how microplastics can become a convenient ‘vehicle’ for toxic substances, concentrating and transporting pollutants such as bisphenol, some phthalates, pesticides and other carcinogenic molecules as well as interfering with the endocrine system.

And it is not just the dangers of the substances added in the processing of plastic, but also of those that it collects as it travels during its long life. According to the French agency Centre national de la recherche scientifique, particles of less than 5 millimetres have the capacity to “bind to organic pollutants in the environment such as PCBs, dioxins or PAHs” and pathogenic microorganisms. There are not sufficient studies to quantify the impact on humans, but the risk is already evident: ingesting particles that are invisible to the naked eye that, once in our organism, release their load of poisons.  “We don’t want to find ourselves in the same dramatic situation as we did with asbestos”, Matteo Fago explains, “a material considered safe and inert for many years before it was discovered, too late, how serious and extensive the damage it had produced on human beings was.”

September 26, 2018

READ FULL ARTICLE AT:

https://ilsalvagente.it/2018/09/26/in-italy-the-first-analysis-carried-out-by-il-salvagente-find-microplastics-in-industrial-soft-drink/

 

 

We are drowning in plastic – how much and how did we get there

WE MADE PLASTIC. WE DEPEND ON IT. AND NOW WE’RE DROWNING IN IT.  The miracle material has made modern life possible. But more than 40 percent of plastic is used just once, and it’s choking our waterways.

… Because plastic wasn’t invented until the late 19th century, and production really only took off around 1950, we have a mere 9.2 billion tons of the stuff to deal with. Of that, more than 6.9 billion tons have become waste. And of that waste, a staggering 6.3 billion tons never made it to a recycling bin—a figure that stunned the scientists who crunched the numbers in 2017.
No one knows how much unrecycled plastic waste ends up in the ocean, Earth’s last sink. In 2015, Jenna Jambeck, a University of Georgia engineering professor, caught everyone’s attention with a rough estimate: between 5.3 million and 14 million tons each year just from coastal regions. Most of it isn’t thrown off ships, she and her colleagues say, but is dumped carelessly on land or in rivers, mostly in Asia. It’s then blown or washed into the sea. Imagine five plastic grocery bags stuffed with plastic trash, Jambeck says, sitting on every foot of coastline around the world—that would correspond to about 8.8 million tons, her middle-of-the-road estimate of what the ocean gets from us annually. It’s unclear how long it will take for that plastic to completely biodegrade into its constituent molecules. Estimates range from 450 years to never.
… And yet there’s a key difference: Ocean plastic is not as complicated as climate change. There are no ocean trash deniers, at least so far. To do something about it, we don’t have to remake our planet’s entire energy system.

“This isn’t a problem where we don’t know what the solution is,” says Ted Siegler, a Vermont resource economist who has spent more than 25 years working with developing nations on garbage. “We know how to pick up garbage. Anyone can do it. We know how to dispose of it. We know how to recycle.” It’s a matter of building the necessary institutions and systems, he says—ideally before the ocean turns, irretrievably and for centuries to come, into a thin soup of plastic.

 

In Plymouth, under the gray gloom of an English autumn, Richard Thompson waited in a yellow slicker outside Plymouth University’s Coxside Marine Station, at the edge of the harbor. A lean man of 54, with a smooth pate rimmed with gray hair, Thompson was headed for an ordinary career as a marine ecologist in 1993—he was working on a Ph.D. on limpets and microalgae that grow on coastal rocks—when he participated in his first beach cleanup, on the Isle of Man. While other volunteers zoomed in on the plastic bottles and bags and nets, Thompson focused on the small stuff, the tiny particles that lay underfoot, ignored, at the high tide line. At first he wasn’t even sure they were plastic. He had to consult forensic chemists to confirm it.

There was a real mystery to be solved back then, at least in academic circles: Scientists wondered why they weren’t finding even more plastic in the sea. World production has increased exponentially—from 2.3 million tons in 1950, it grew to 162 million in 1993 and to 448 million by 2015—but the amount of plastic drifting on the ocean and washing up on beaches, alarming as it was, didn’t seem to be rising as fast. “That begs the question: Where is it?” Thompson said. “We can’t establish harm to the environment unless we know where it is.”

In the years since his first beach cleanup, Thompson has helped provide the beginnings of an answer: The missing plastic is getting broken into pieces so small they’re hard to see. In a 2004 paper, Thompson coined the term “microplastics” for these small bits, predicting—accurately, as it turned out—that they had “potential for large-scale accumulation” in the ocean.

When we met in Plymouth last fall, Thompson and two of his students had just completed a study that indicated it’s not just waves and sunlight that break down plastic. In lab tests, they’d watched amphipods of the species Orchestia gammarellus—tiny shrimplike crustaceans that are common in European coastal waters—devour pieces of plastic bags and determined they could shred a single bag into 1.75 million microscopic fragments. The little creatures chewed through plastic especially fast, Thompson’s team found, when it was coated with the microbial slime that is their normal food. They spat out or eventually excreted the plastic bits.

Microplastics have been found everywhere in the ocean that people have looked, from sediments on the deepest seafloor to ice floating in the Arctic—which, as it melts over the next decade, could release more than a trillion bits of plastic into the water, according to one estimate. On some beaches on the Big Island of Hawaii, as much as 15 percent of the sand is actually grains of microplastic. Kamilo Point Beach, the one I walked on, catches plastic from the North Pacific gyre, the trashiest of five swirling current systems that transport garbage around the ocean basins and concentrate it in great patches. At Kamilo Point the beach is piled with laundry baskets, bottles, and containers with labels in Chinese, Japanese, Korean, English, and occasionally, Russian. On Henderson Island, an uninhabited coral island in the South Pacific, researchers have found an astonishing volume of plastic from South America, Asia, New Zealand, Russia, and as far away as Scotland.

As Thompson and I talked about all this, a day boat called the Dolphin was carrying us through a light chop in the Sound, off Plymouth. Thompson reeled out a fine-mesh net called a manta trawl, usually used for studying plankton. We were close to the spot where, a few years earlier, other researchers had collected 504 fish of 10 species and given them to Thompson. Dissecting the fish, he was surprised to find microplastics in the guts of more than one-third of them. The finding made international headlines.

In Life magazine in 1955, an American family celebrates the dawn of “Throwaway Living,” thanks in part to disposable plastics. Single-use plastics have brought great convenience to people around the world, but they also make up a big part of the plastic waste that’s now choking our oceans.

PHOTOGRAPH BY PETER STACKPOLE, LIFE PICTURE COLLECTION/GETTY IMAGES

 

After we’d steamed along for a while, Thompson reeled the manta trawl back in. There was a smattering of colored plastic confetti at the bottom. Thompson himself doesn’t worry much about microplastics in his fish and chips—there’s little evidence yet that they pass from the gut of a fish into the flesh we actually eat. (See We Know Plastic Is Harming Marine Life. What About Us?) He worries more about the things that none of us can see—the chemicals added to plastics to give them desirable properties, such as malleability, and the even tinier nanoplastics that microplastics presumably degrade into. Those might pass into the tissues of fish and humans.

“We do know the concentrations of chemicals at the time of manufacture in some cases are very high,” Thompson said. “We don’t know how much additive is left in the plastic by the time it becomes bite-size to a fish.

“Nobody has found nanoparticles in the environment—they’re below the level of detection for analytical equipment. People think they are out there. They have the potential to be sequestered in tissue, and that could be a game changer.”

Thompson is careful not to get ahead of the science on his subject. He’s far from an alarmist—but he’s also convinced that plastic trash in the ocean is far more than an aesthetic problem. “I don’t think we should be waiting for a key finding of whether or not fish are hazardous to eat,” he said. “We have enough evidence to act.”

In one of their early applications, they saved wildlife. In the mid-1800s, piano keys, billiard balls, combs, and all manner of trinkets were made of a scarce natural material: elephant ivory. With the elephant population at risk and ivory expensive and scarce, a billiards company in New York City offered a $10,000 reward to anyone who could come up with an alternative.

As Susan Freinkel tells the tale in her book, Plastic: A Toxic Love Story, an amateur inventor named John Wesley Hyatt took up the challenge. His new material, celluloid, was made of cellulose, the polymer found in all plants. Hyatt’s company boasted that it would eliminate the need “to ransack the Earth in pursuit of substances which are constantly growing scarcer.” Besides sparing at least some elephants, celluloid also helped change billiards from solely an aristocratic pastime to one that working people play in bars.

That’s a trivial example of a profound revolution ushered in by plastic—an era of material abundance. The revolution accelerated in the early 20th century, once plastics began to be made from the same stuff that was giving us abundant, cheap energy: petroleum. Oil companies had waste gases like ethylene coming out the stacks of their refineries. Chemists discovered they could use those gases as building blocks, or monomers, to create all sorts of novel polymers—polyethylene terephthalate, for example, or PET—instead of working only with polymers that already existed in nature. A world of possibilities opened up. Anything and everything could be made of plastic, and so it was, because plastics were cheap.

They were so cheap, we began to make things we never intended to keep. In 1955 Life magazine celebrated the liberation of the American housewife from drudgery. Under the headline “Throwaway Living,” a photograph showed a family flinging plates, cups, and cutlery into the air. The items would take 40 hours to clean, the text noted—“except that no housewife need bother.” When did plastics start to show their dark side? You might say it was when the junk in that photo hit the ground.

Six decades later, roughly 40 percent of the now more than 448 million tons of plastic produced every year is disposable, much of it used as packaging intended to be discarded within minutes after purchase. Production has grown at such a breakneck pace that virtually half the plastic ever manufactured has been made in the past 15 years. Last year the Coca-Cola Company, perhaps the world’s largest producer of plastic bottles, acknowledged for the first time just how many it makes: 128 billion a year. Nestlé, PepsiCo, and others also churn out torrents of bottles.

The growth of plastic production has far outstripped the ability of waste management to keep up: That’s why the oceans are under assault. “It’s not surprising that we broke the system,” Jambeck says. “That kind of increase would break any system not prepared for it.” In 2013 a group of scientists issued a new assessment of throwaway living. Writing in Nature magazine, they declared that disposable plastic should be classified, not as a housewife’s friend, but as a hazardous material.

In recent years the surge in production has been driven largely by the expanded use of disposable plastic packaging in the growing economies of Asia—where garbage collection systems may be underdeveloped or nonexistent. In 2010, according to an estimate by Jambeck, half the world’s mismanaged plastic waste was generated by just five Asian countries: China, Indonesia, the Philippines, Vietnam, and Sri Lanka.

“Let’s say you recycle 100 percent in all of North America and Europe,” says Ramani Narayan, a chemical engineering professor at Michigan State University who also works in his native India. “You still would not make a dent on the plastics released into the oceans. If you want to do something about this, you have to go there, to these countries, and deal with the mismanaged waste.”

A LIFETIME OF PLASTIC: The first plastics made from fossil fuels are just over a century old. They came into widespread use after World War II and are found today in everything from cars to medical devices to food packaging. Their useful lifetime varies. Once disposed of, they break down into smaller fragments that linger for centuries.

Total: 448 million tons produced in 2015

Growth in Asia: As the economies in Asia grow, so does demand for consumer products—and plastics. Half the world’s plastics are made there, 29 percent in China.

The legacy of World War II: Shortages of natural materials during the war led to a search for synthetic alternatives—and to an exponential surge in plastic production that continues today.  The largest market for plastics today is for packaging materials. That trash now accounts for nearly half of all plastic waste generated globally; most of it never gets recycled or incinerated.

DURABLE CHAINS: Plastics are polymers: Long-chain molecules made of repeating links, or monomers. The chains are strong, light, and durable, which makes them so useful—and so problematic when they’re disposed of carelessly. Chemical reactions Heat, pressure, and catalysts drive reactions that link the monomers. The monomers that are synthesized into plastics are usually derived from fossil fuels such as crude oil and natural gas.

END PRODUCTS: PET is one of the most widely used polymers. Methanol, a by-product of PET synthesis, is typically incinerated.
By Laura Parker, National Geographic
June 2018
READ FULL ARTICLE AND SEE CHARTS AT:

We Know Plastic Is Harming Marine Life. What About Humans?

There often are tiny bits of plastic in the fish and shellfish humans eat. Scientists are racing to figure out what that means for our health.

In a laboratory at Columbia University’s Lamont-Doherty Earth Observatory, in Palisades, New York, Debra Lee Magadini positions a slide under a microscope and flicks on an ultraviolet light. Scrutinizing the liquefied digestive tract of a shrimp she bought at a fish market, she makes a tsk-ing sound. After examining every millimeter of the slide, she blurts, “This shrimp is fiber city!” Inside its gut, seven squiggles of plastic, dyed with Nile red stain, fluoresce.

All over the world, researchers like Magadini are staring through microscopes at tiny pieces of plastic—fibers, fragments, or microbeads—that have made their way into marine and freshwater species, both wild caught and farmed. Scientists have found microplastics in 114 aquatic species, and more than half of those end up on our dinner plates. Now they are trying to determine what that means for the health of humans.

So far science lacks evidence that microplastics—pieces smaller than one-fifth of an inch—are affecting fish at the population level. Our food supply doesn’t seem to be under threat—at least as far as we know. But enough research has been done now to show that the fish and shellfish we enjoy are suffering from the omnipresence of this plastic. Every year five million to 14 million tons flow into our oceans from coastal areas. Sunlight, wind, waves, and heat break down that material into smaller bits that look—to plankton, bivalves, fish, and even whales—a lot like food.

Fish caught by children who live next to a hatchery on Manila Bay in the Philippines live in an ecosystem polluted by household waste, plastics, and other trash. Whether microplastics ingested by fish affect humans is unknown, but scientists are looking for answers.PHOTOGRAPH BY RANDY OLSON

Experiments show that microplastics damage aquatic creatures, as well as turtles and birds: They block digestive tracts, diminish the urge to eat, and alter feeding behavior, all of which reduce growth and reproductive output. Their stomachs stuffed with plastic, some species starve and die.

In addition to mechanical effects, microplastics have chemical impacts, because free-floating pollutants that wash off the land and into our seas—such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals—tend to adhere to their surfaces.

Chelsea Rochman, a professor of ecology at the University of Toronto, soaked ground-up polyethylene, which is used to make some types of plastic bags, in San Diego Bay for three months. She then offered this contaminated plastic, along with a laboratory diet, to Japanese medakas, small fish commonly used for research, for two months. The fish that had ingested the treated plastic suffered more liver damage than those that had consumed virgin plastic. (Fish with compromised livers are less able to metabolize drugs, pesticides, and other pollutants.) Another experiment demonstrated that oysters exposed to tiny pieces of polystyrene—the stuff of take-out food containers—produce fewer eggs and less motile sperm.

The list of freshwater and marine organisms that are harmed by plastics stretches to hundreds of species.

It’s difficult to parse whether microplastics affect us as individual consumers of seafood, because we’re steeped in this material—from the air we breathe to both the tap and bottled water we drink, the food we eat, and the clothing we wear. Moreover, plastic isn’t one thing. It comes in many forms and contains a wide range of additives—pigments, ultraviolet stabilizers, water repellents, flame retardants, stiffeners such as bisphenol A (BPA), and softeners called phthalates—that can leach into their surroundings.

Some of these chemicals are considered endocrine disruptors—chemicals that interfere with normal hormone function, even contributing to weight gain. Flame retardants may interfere with brain development in fetuses and children; other compounds that cling to plastics can cause cancer or birth defects. A basic tenet of toxicology holds that the dose makes the poison, but many of these chemicals—BPA and its close relatives, for example—appear to impair lab animals at levels some governments consider safe for humans.

Studying the impacts of marine microplastics on the health of humans is challenging because people can’t be asked to eat plastics for experiments, because plastics and their additives act differently depending on physical and chemical contexts, and because their characteristics may change as creatures along the food chain consume, metabolize, or excrete them. We know virtually nothing about how food processing or cooking affects the toxicity of plastics in aquatic organisms or what level of contamination might hurt us.

The good news is that most microplastics studied by scientists seem to remain in the guts of fish and do not move into muscle tissue, which is what we eat. The United Nations Food and Agriculture Organization, in a thick report on this subject, concludes that people likely consume only negligible amounts of microplastics—even those who eat a lot of mussels and oysters, which are eaten whole. The agency reminds us, also, that eating fish is good for us: It reduces the risk of cardiovascular disease, and fish contain high levels of nutrients uncommon in other foods.

That said, scientists remain concerned about the human health impacts of marine plastics because, again, they are ubiquitous and they eventually will degrade and fragment into nanoplastics, which measure less than 100 billionths of a meter—in other words, they are invisible. Alarmingly these tiny plastics can penetrate cells and move into tissues and organs. But because researchers lack analytical methods to identify nanoplastics in food, they don’t have any data on their occurrence or absorption by humans.

And so the work continues. “We know that there are effects from plastics on animals at nearly all levels of biological organization,” Rochman says. “We know enough to act to reduce plastic pollution from entering the oceans, lakes, and rivers.” Nations can enact bans on certain types of plastic, focusing on those that are the most abundant and problematic. Chemical engineers can formulate polymers that biodegrade. Consumers can eschew single-use plastics. And industry and government can invest in infrastructure to capture and recycle these materials before they reach the water.

In a dusty basement a short distance from the lab where Magadini works, metal shelves hold jars containing roughly 10,000 preserved mummichogs and banded killifish, trapped over seven years in nearby marshes. Examining each fish for the presence of microplastics is a daunting task, but Magadini and her colleagues are keen to see how levels of exposure have changed over time. Others will painstakingly untangle how microbeads, fibers, and fragments affect these forage fish, the larger fish that consume them, and—ultimately—us.

“I think we’ll know the answers in five to 10 years’ time,” Magadini says.

By then at least another 25 million tons of plastic will have flowed into our seas.

June 2108

https://www.nationalgeographic.com/magazine/2018/06/plastic-planet-health-pollution-waste-microplastics/

Plastic pollution: How one woman found a new source of methane gas hidden in plastic waste

Young researcher Sarah-Jeanne Royer set out to measure methane gas coming from biological activity in sea water.  Instead, in a “happy accident” she found that the plastic bottles holding the samples were a bigger source of this powerful warming molecule than the bugs in the water.  Now she’s published further details in a study into the potential warming impact of gases seeping from plastic waste.

“It was a totally unexpected discovery,” Dr Royer told BBC News. “Some members of the lab were experimenting with high density polyethylene bottles looking at methane biological production, but the concentrations were much higher than expected. So we realised that the emissions were not just coming from the biology but from the bottle that we were using for the experiment.”

After graduating from university in Barcelona, Dr Royer found herself in Hawaii, leading teams of volunteers who were helping to remove plastic from beaches at weekends, while working on the chemistry of the substance during the week.

on the beach         Image copyright OLIVIER POIRION

Now she’s published her report after spending a year and a half testing different types of plastic in and out of seawater to see if they emit methane and ethylene, which both contribute to the greenhouse effect.

Dr Royer found that the most widely-used plastic, the stuff used to make shopping bags, is the one that produces the greatest amount of these warming gases.

At the end of the study, after 212 days in the sun, this plastic emitted 176 times more methane than at the start of the experiment.

Ironically, when plastics were exposed to air the amount of methane emitted was double the level from sea water.

What’s causing these emissions?

In short it’s the Sun. Solar radiation acts on the surface of plastic waste. As it breaks down, becomes cracked and pitted, these defects increase the surface area of plastic available to sunlight which accelerates gas production. Even in the dark, the gas continues to seep out.

“I’m in the field every week,” said Dr Royer.  “When I touch a piece of plastic, if there’s a little impact on that plastic it’s degrading into hundred of pieces pretty much as we look at it.”

plastic waste         Image copyright SARAH-JEANNE ROYER
 Image caption Plastic waste washed up in a Hawaiian bay

Is this a big deal?

Up to now, the link between plastics and climate change was mainly focussed on the use of fossil fuels like oil and gas in the manufacture of plastic items.

It’s also known that when plastics degrade in the environment, they release CO2. Experts have welcomed this report as it is the first time that anyone has tried to quantify other warming gases emerging from plastic waste.

“Low density polyethylene (LDPE) does emit ethylene, methane and propane, even at low temperatures that contribute to greenhouse gas emissions,” Prof Ashwani Gupta from the University of Maryland, who was not involved in the study, told BBC News.

“It is nice to see some quantified emissions on greenhouse gases for the selected polyethylene. The results clearly show variation in gas emission levels among the different polyethylene sources.”

plastic          Image copyright SARAH-JEANN ROYER

While the amounts of methane and ethylene being produced right now from plastics are very small, Dr Royer is concerned about the future and the fact that as plastic breaks down, more surface area is exposed, increasing the amount of the gases that drifts into the atmosphere.

“If we look at all the plastic produced since 1950, it’s pretty much all still on the planet, and it’s just degrading into smaller and smaller pieces, so we know the industry is booming and in the next 30 years and more and more greenhouse gases will be produced – that’s a big thing.”

What have the plastics industry said?

Nothing much at this point. According to Dr Royer, when she approached companies in the field, they weren’t keen on talking about it.

“I told them I was a scientist and I was trying to understand the chemistry of the plastic,” she said. “I was trying to order some plastics of different densities and I was asking questions about the process and they all said we don’t want to have contact with you anymore. I think the plastic industry absolutely knows, and they don’t want this to be shared with the world.”

How have other scientists reacted?

“Research on plastic waste is revealing it to be a disturbing pandora’s box,” said Dr Montserrat Filella, a chemist at the University of Geneva.

“As research expands our knowledge, we are realising that plastics can be insidious in many other ways. For instance, as vectors of ‘hidden pollutants’, such as heavy metals present in them or, now, as a source of greenhouse gases. And, in all cases, throughout the entire lifetime of the plastic.”

plastic         Image copyright SARAH-JEANNE ROYER
 Image caption Plastic debris from the tsunami in Japan is still causing problems in Hawaii

Others agreed that further research was urgently needed.

“No one knows how much methane and ethylene are being released from these sources. We don’t know if it is adding significant amounts of greenhouse gases to our atmosphere,” said Dr Jennifer Lynch, a marine environment expert from the US National Institute of Standards and Technology (Nist).

“It’s another consequence of the use of plastics and it needs further examination.”

 

August 2, 2018

https://www.bbc.com/news/science-environment-45043989?SThisFB&fbclid=IwAR2PPafrNBIg_V2Zual3IjO6ApYyMsr32rISZnRByZarz96D2tUhyVFkMaI

 

Plastic and traces of hazardous chemicals have been found in Antarctica

Plastic and traces of hazardous chemicals have been found in the majority of snow and ice samples taken earlier this year in Antarctica, one of the world’s last great wildernesses, according to a new study.

Researchers spent three months taking water and snow samples from remote areas of Antarctica earlier this year. These have now been analysed and researchers have confirmed the majority contained “persistent hazardous chemicals” or microplastics.

The findings come amid growing concern about the extent of the plastic pollution crisis which scientists have warned risks “permanent contamination” of the planet.

Thilo Maack takes snow samples on Greenwich Island in the Antarctic to test for environmental pollutants.

 Thilo Maack takes snow samples on Greenwich Island in the Antarctic to test for environmental pollutants. Photograph: Paul Hilton/Paul Hilton / Greenpeace

. . . The new report by researchers at Greenpeace is part of global campaign to create the world’s biggest ocean sanctuary in the seas around Antarctica to protect the fragile ecosystem from industrial fishing and climate change.

Frida Bengtsson, of Greenpeace’s Protect the Antarctic campaign, said the findings proved that even the most remote areas of the planet were not immune from the impact of manmade pollution.  “We need action at source, to stop these pollutants ending up in the Antarctic in the first place, and we need an Antarctic ocean sanctuary to give space for penguins, whales and the entire ecosystem to recover from the pressures they’re facing,” she said.

Seven of the eight sea-surface water samples tested contained microplastics such as microfibres. Seven of the nine snow samples tested contained detectable concentrations of the persistent hazardous chemicals – polyfluorinated alkylated substances, or PFAS.  Researchers said the chemicals are widely used in many industrial processes and consumer products and have been linked to reproductive and developmental issues in wildlife. They said the snow samples gathered included freshly fallen snow, suggesting the hazardous chemicals had come from contaminated rain or snowfall.

Prof Alex Rogers, a specialist in sustainable oceans at the Oxford Martin school, Oxford University, said the discovery of plastics and chemicals in Antarctica confirmed that man-made pollutants were now affecting ecosystems in every corner of the world.  And he warned the consequences of this pervasive contamination remained largely unknown.  “The big question now is what are the actual consequences of finding this stuff here? Many of these chemicals are pretty nasty and as they move up the food chain they may be having serious consequences for the health of wildlife, and ultimately humans. The effects of microplastics on marine life, likewise, are largely not understood,” he said.

The samples were collected during a three-month expedition to the Antarctic aboard the Greenpeace ship, Arctic Sunrise, from January to March 2018.
Pinterest
The samples were collected during a three-month expedition to the Antarctic aboard the Greenpeace ship, Arctic Sunrise, from January to March 2018. Photograph: Christian Åslund/Christian Åslund / Greenpeace

Bengtsson said: “Plastic has now been found in all corners of our oceans, from the Antarctic to the Arctic and at the deepest point of the ocean, the Mariana trench. We need urgent action to reduce the flow of plastic into our seas and we need large-scale marine reserves – like a huge Antarctic ocean sanctuary which over 1.6m people are calling for – to protect marine life and our oceans for future generations.”

The samples were gathered during a three-month Greenpeace expedition to the Antarctic from January to March 2018. The Guardian joined the trip for two weeks in February.

A decision on the sanctuary proposal, which is being put forward by the EU and supported by environmental campaign groups around the world, will be taken at the forthcoming meeting of the Antarctic Ocean Commission in Tasmania in October.

By Matthew Taylor, The Guardian

June 6, 2018

https://www.theguardian.com/environment/2018/jun/06/antarctica-plastic-contamination-reaches-earths-last-wilderness

 

Plastic Bag Found at the Bottom of the Mariana Trench – the World’s Deepest Ocean Trench

THE MARIANA TRENCH—THE deepest point in the ocean—extends nearly 36,000 feet (10,989 meters) down in a remote part of the Pacific Ocean, but it has not escaped from the global onslaught of plastic pollution.  A recent study revealed that a plastic bag, like the kind given away at grocery stores, is now the deepest known piece of plastic trash.  The discovery is one of 3,000 pieces of man-made debris dating back 30 years.

Scientists found it by looking through the Deep-Sea Debris Database, a collection of photos and videos taken from 5,010 dives from numerous international teams working around the world over the past 30 years and using deep-sea remote vehicles to help study the ocean beds to discover what lies beneath.

Of the classifiable debris logged in the database, plastic was the most prevalent, and plastic bags in particular made up the greatest source of plastic trash. Other debris came from material like rubber, metal, wood, and cloth, and some is yet to be classified.

Most of the plastic—a whopping 89 percent—was the type of plastic that is used once and then thrown away, like a plastic water bottle or disposable utensil.

While the Mariana Trench may seem like a dark, lifeless pit, it hosts more life than you might think. NOAA’s Okeanos Explorer vessel searched the region’s depths in 2016 and found diverse life-forms, including species like coral, jellyfish, and octopus. The recent study also found that 17 percent of the images of plastic logged in the database showed interactions of some kind with marine life, like animals becoming entangled in the debris.

The new study is just one among many showing just how prevalent plastic pollution has become worldwide. Single-use plastics are virtually everywhere, and they may take hundreds of years or more to break down once in the wild.

Last February, a separate study showed that the Mariana Trench has higher levels of overall pollution in certain regions than some of the most polluted rivers in China. The study’s authors theorized that the chemical pollutants in the trench may have come in part from the breakdown of plastic in the water column. . . .

 

By Sarah Gibbons, National Geographic

May 11, 2018

READ FULL ARTICLE AT:

https://news.nationalgeographic.com/2018/05/plastic-bag-mariana-trench-pollution-science-spd/

Additional information from: The Telegraph

https://www.telegraph.co.uk/news/2018/05/09/worlds-deepest-plastic-bag-found-bottom-mariana-trench-highlighting/ May 10, 2018

 

See also:

Arctic sea ice contains huge quantity of microplastics, reveals new analysis

Plastic and traces of hazardous chemicals have been found in Antarctica

https://oceanchampions.ca/1563-2/ ‎

 

The Average Person Ingests 70,000 Microplastics Each Year

So along with fat, protein, and carbohydrates, your body is also getting a steady dose of plastic waste.

That’s the conclusion reached by a team of UK-based researchers in a new report published in Environmental Pollution.

To investigate this phenomenon, the researchers placed petri dishes with sticky surfaces next to dinner plates in three homes in the UK. After 20 minutes, the dishes accumulated an average of 14 microplastics.

The team then extrapolated the size of the petri dish to match a dinner plate and the food on it. They determined that each meal attracts around 100 particles from broken down synthetic fabrics, carpets, car tires, clothing, and more.

It’s an alarming finding that adds to a growing body of research on how plastic contaminates the world.

The average US sample of tap water contains 4.8 fibers of plastic, compared with an average of 1.9 fibers in Europe, according to research by Orb Media. Bottled water, meanwhile, has more than twice as many particles on average.

All of this consumed plastic could have negative health effects, according to the UN, which classifies some components of plastic as carcinogens.

micrplastic image.jpgEnvironmental Pollution of Microplastics

Plus, when plastic is floating in the environment, it becomes a magnet for pollutants.

This latest research was initially conceived to study the level of plastic contamination in seafood, according to IFLS. The home analysis was meant to act as a control, but it turned out that home environments had far more plastic contamination.

“These results may be surprising to some people who may expect the plastic fibers in seafood to be higher than those in household dust,” said study author Dr Ted Henry in a statement. “We do not know where these fibers come from, but it is likely to be inside the home and the wider environment.”

The study, of course, would need to be done on a much larger scale for more definitive results, but its conclusion contributes to a portrait of a world awash in plastic.

Between 1950 and 2015, an estimated 8.3 billion metric tons of plastic were created, the equivalent of 1 billion elephants, according to a report published in Science Advances. If current trends continue, 12 billion metric tons of plastic waste will exist in the world by 2050. That’s 1.6 metric tons, or the size of midsize car, for every human on the planet.

Arctic sea ice contains huge quantity of microplastics, reveals new analysis

Scientists have found an unprecedented number of microplastic frozen in Arctic sea ice, demonstrating the alarming extent to which they are pervading marine environments.

Analysis of ice cores from across the Arctic region found levels of the pollution were up to three times higher than previously thought.  Each litre of sea ice contained around 12,000 particles of plastic, which scientists are now concerned are being ingested by native animals.

Scientists collected Arctic ice samples while on board the German research icebreaker Polarstern, seen here above the Lomonosov Ridge in the central Arctic Ocean

Scientists collected Arctic ice samples while on board the German research icebreaker Polarstern, seen here above the Lomonosov Ridge in the central Arctic Ocean ( Alfred-Wegener-Institut/Rüdiger Stein )

Based on their analysis, the researchers were even able to trace the tiny fragments’ paths from their places of origin, from fishing vessels in Siberia to everyday detritus that had accumulated in the infamous Great Pacific Garbage Patch.

“We are seeing a clear human imprint in the Arctic,” the study’s first author, Dr Ilka Peeken, told The Independent. “It suggests that microplastics are now ubiquitous within the surface waters of the world’s ocean,” said Dr Jeremy Wilkinson, a sea ice physicist at the British Antarctic Survey who was not involved with the study.

“Nowhere is immune.”

AWI scientist Julia Gutermann analysing an Arctic sea ice core for microplastic particles in a lab at the AWI Helgoland (Tristan Vankann)

Dr Peeken and her team at the Alfred Wegener Institute for Polar and Marine Research collected ice core samples over the course of three expeditions on the research icebreaker Polarstern.  Their voyages covered five regions along the Transpolar Drift and Fram Strait, which channel sea ice from the Central Arctic to the North Atlantic.

Not only is polar sea ice acting as a store for ocean plastic that could potentially be released as global temperatures get warmer due to climate change, the movement of sea ice could be depositing microplastics in areas that were previously plastic-free.

The researchers analysed their samples using a device known as a Fourier-transform infrared spectrometer.  This enabled them to examine the ice cores layer by layer and in great detail, working out the origins of even the tiniest shards of plastic.

“What is interesting also is you have very localised sources – ship paint particles and cigarette butts and stuff like that,” said Dr Peeken. “We also see polyethylene, a very light polymer which is found in really high numbers particularly in the Central Arctic. We think that there is an incoming flow from the Pacific so that could show that is coming from that region.

“We see a large impact of plastic pollution coming from the urban areas – a lot is coming from the Atlantic and from the Pacific.”

In their paper, , the scientists speculate that this polyethylene could originate from the Great Pacific Garbage Patch in the North Pacific Gyre. . . .

In ice cores collected in Siberia, the predominant forms of microplastic included paint particles from ships and nylon waste from fishing nets.

Over half the microplastic particles trapped in the ice were less than a twentieth of a millimetre wide, meaning they could easily be ingested by small Arctic creatures.

“While we don’t yet know the full extent of the impact of microplastics on the health of the marine environment or humans, the growing body of evidence suggests microplastic pollution is a contaminant of environmental and economic concern,” said Dr Pennie Lindeque, lead plastics scientist at Plymouth Marine Laboratory, who was not involved with the study.

“As microplastics can look like prey for marine animals and are small in size they may be eaten by a wide range of species, from zooplankton – small animals at the base of the food web –  to seabird and whales, potentially impacting marine ecosystems and the food chain.”

Other scientists welcomed the research as “a benchmark study” that demonstrated the extent to which plastics both big and small have covered the world.  However, given the scale of the global plastic crisis, they said its conclusions did not come as a surprise.

Professor Richard Thompson, an ocean plastic researcher at the University of Plymouth who first coined the use of the term microplastics, said this study builds on work he conducted to establish their concentration in Arctic ice.  “The study reinforces what is already clear to many marine scientists – that plastic debris is a highly persistent form of contamination that can accumulate in considerable concentrations even in remote locations far from the likely points of entry to the ocean. What is increasingly clear is the urgency with which we need to take steps to halt the flow of plastic debris to the ocean.

“A key priority in my view is interdisciplinary research focused on delivering appropriate evidence to inform industry and policy on the most appropriate solutions.”

By Josh Gabbatiss, Science Correspondent, Independent

April 14, 2018

https://www.independent.co.uk/environment/plastic-pollution-arctic-sea-ice-microplastics-ocean-environment-a8319951.html

Humans have produced 8.3 billion tonnes of plastic and 6.3 billion tonnes of plastic waste

Most plastic waste has already made its way to landfills and oceans.

Plastic is in almost everything we use. Now researchers have calculated the staggering amount of the synthetic material humans have produced since large-scale production began in the 1950s: 8.3 billion tonnes.

More disturbing, the researchers say, is the amount of plastic waste that humans have produced. Of the 8.3 billion tonnes we’ve made since 1950, 6.3 billion of that has already become waste.

“We expected the numbers to be large, but somehow we were surprised at how large they are,” Roland Geyer, lead author of the study and associate professor in environmental science and management at the University of California, Santa Barbara, told CBC News.

“Even for people like me who do these kinds of material flow analyses for a living, these are enormous quantities.”

The number that shocks him the most, however, is the rapid increase in production.

“Of the 8.3 billion metric tonnes of virgin plastics ever made, half was made just in the last 13 years,” Geyer said. “Between 2004 and 2015 we made as much plastic as we made between 1950 and 2004.”

Choking our ecosystems

The same team responsible for this study was behind a 2015 study that found somewhere between 4.8 million and 12.7 million tonnes of plastic from people living within 50 kilometres of coastlines had made its way into our oceans.
“Our estimate of eight million metric tonnes going into the oceans in 2010 is equivalent to five grocery bags filled with plastic for every foot of coastline in the world,” said Jenna Jambeck, co-author of both studies, in a statement at the time. “This annual input increases each year, so our estimate for 2015 is about 9.1 million metric tons,” she said.

“In 2025, the annual input would be about twice the 2010 input, or 10 bags full of plastic per foot of coastline,” she said. “So the cumulative input by 2025 would equal 155 million metric tonnes.”

A recent study found evidence that plastic was making its way into the Arctic Ocean.

“Most humans live in temperate regions and towards equatorial regions, and yet our pollution is not staying in those kind of geographical bounds — they’re moving beyond into these remote regions,” Jennifer Provencher, a post-doctoral researcher at Acadia University in Wolfville, N.S., told CBC News in May.

There have been several studies on how plastic waste is harming wildlife, with a focus on sea birds.

  This albatross’s gut is full of plastic. Photo: Chris Jordan

“I’m very concerned,” Geyer said of plastic in the ocean. “But in a way I’m equally concerned with plastics in terrestrial ecosystems. We don’t even really study the effects of plastics in terrestrial ecosystems. I’m worried that there could be all kinds of unintended adverse environmental consequences.”

Plethora of packaging

“We have to be really mindful of plastics,” Geyer said. “I’m having the exact same struggle and challenges everyone else has. You come home from the supermarket and you’re just amazed at how much packaging there is together with the produce and the food.”

  Most things we buy at the supermarket come in plastic packaging (CBC)

While we may be more aware of plastic packaging, the use of plastic fibres in clothing like nylons and fleece has also grown. Between 1950 and 2015, it accounted for one billion tonnes of plastic.

The key, Geyer said, is to ask yourself if you need to buy a product with so much plastic. He notes that some companies like clothing company Patagonia and Mountain Equipment Coop are trying to reduce the amount of plastic in their products. Being mindful in your purchasing habits is key.

“It’s something as a society we collectively have to have a good think about,” Geyer said. “There’s a way to reduce and still have the same services and quality of life. And that would definitely be a simple way to address plastic waste generation; if we just make less in the first place.”

Featured image: Humans have created 8.3 billion tonnes of plastic, of which 6.3 billion tonnes has already become waste, a new study says. ( Joe Raedle/Getty Images)

SOURCE:

Humans have produced 8.3 billion tonnes of plastic, researchers say

By Nicole Mortillaro, CBC News, 

http://www.cbc.ca/news/technology/humans-produce-billions-tonnes-plastic-1.4210279

Samples collected from the Great Pacific Garbage Patch. Photo: The Ocean Cleanup

The Great Pacific Garbage Patch may be 16 times as massive than previously thought

A new study involving scientists from around the world estimates there are more than 79,000 tonnes of ocean plastic in a 1.6 million square kilometre area of the North Pacific Ocean, commonly referred to as the Great Pacific Garbage Patch. 

An enormous area of rubbish floating in the Pacific Ocean, known as the Great Pacific Garbage Patch, is teeming with far more debris than previously thought, heightening alarm that the world’s oceans are being increasingly choked by trillions of pieces of plastic.

The sprawling patch of detritus – spanning 1.6m sq km, (617,763 sq miles) more than twice the size of France – contains at least 79,000 tons of plastic, new research published in Nature has found. This mass of waste is up to 16 times larger than previous estimates and provides a sobering challenge to a team that will start an ambitious attempt to clean up the vast swath of the Pacific this summer.

79,000 tons is “the equivalent to the mass of more than 6,500 school buses.” Helen Thompson, Science News

The analysis, conducted by boat and air surveys taken over two years, found that pollution in the so-called Great Pacific Garbage Patch is almost exclusively plastic and is “increasing exponentially”. Microplastics, measuring less than 0.5cm (0.2in), make up the bulk of the estimated 1.8tn pieces floating in the garbage patch, which is kept in rough formation by a swirling ocean gyre.

While tiny fragments of plastic are the most numerous, nearly half of the weight of rubbish is composed of discarded fishing nets. Other items spotted in the stew of plastic include bottles, plates, buoys, ropes and even a toilet seat.

   

Fishing nets and ropes make up 47% of the plastic mass in the Great Pacific Garbage Patch, a new study suggests. Photo: NOAA  A sea turtle entangled in a ghost net. Photo by Francis Perez

“I’ve been doing this research for a while, but it was depressing to see,” said Laurent Lebreton, an oceanographer and lead author of the study. Lebreton works for the Ocean Cleanup, a Dutch-based non-profit that is aiming to tackle the garbage patch. “There were things you just wondered how they made it into the ocean. There’s clearly an increasing influx of plastic into the garbage patch.”

 

Particles smaller than half a centimeter, called microplastics, account for 94% of the pieces, but only 8% of the overall mass. In contrast, large (5 to 50 centimeters) and extra-large (bigger than 50 centimeters) pieces made up 25% and 53% of the estimated patch mass.  Much of the plastic in the patch comes from humans’ ocean activities, such as fishing and shipping, the researchers found. Almost half of the total mass, for example, is from discarded fishing nets. A lot of that litter contains especially durable plastics, such as polyethylene and polypropylene, which are designed to survive in marine environments.  Helen Thompson, Science News

“We need a coordinated international effort to rethink and redesign the way we use plastics. The numbers speak for themselves. Things are getting worse and we need to act now.”

 

. . . The problem of plastic pollution is gaining traction in diplomatic circles, with nearly 200 countries signing on to a UN resolution last year that aims to stem the flood of plastic into the oceans. However, the agreement has no timetable and is not legally binding.

Dr Clare Steele, a California-based marine ecologist who was not involved in the research, said the study provided “great progress” in understanding the composition of the Great Pacific garbage patch.

But she regretted that while removing larger items, such as ghost fishing nets, would help wildlife, the clean-up would not deal with the colossal amount of microplastic.

“Those plankton-sized pieces of plastic are pretty difficult to clean up,” she said. “The only way is to address the source and that will require a radical shift on how we use materials, particularly single-use plastic such as cutlery, straws and bottles that are so durable.

“We need to reduce waste and come up with new, biodegradable alternatives to plastic. But one of the easiest steps is changing the way we use and discard the more ephemeral plastic products.”

Cleanup efforts

And while Eriksen supports initiatives like The Ocean Cleanup Foundation, which plans to use nets to collect ocean plastic, he says that’s not a solution by itself.

“I applaud them for going after the big stuff in the middle of the ocean. That’s great,” he said. “We need to keep those nets from shredding into microplastics. But it’s disingenuous to say you’re cleaning the oceans when you’re doing nothing to stop the flow of trash at land and sea.”

Eriksen said that what’s needed is a wide-scale effort beginning at the source.

“Policy has to have [manufacturers] clean up their act,” he said. “And make smarter products and think of the full life cycle; stop making something that, when it becomes waste, becomes a nightmare for everyone.”

Both Lebreton and Eriksen would like to see less single-use plastic as well as a focus on cleaning up beaches and shores, before it makes its ways into our oceans.

“We’ve created a monster with plastic,” Lebreton said. “This [study] shows the urgency of the situation and shows that we need to act quickly.”

READ FULL ARTICLE AT:

Great Pacific Garbage Patch is 16 times bigger than previously estimated, study finds

Sample collected during 2015 expedition was mostly microplastics less than 0.5 cm in diameter

By Nicole Mortillaro, CBC News, March 22, 2018

http://www.cbc.ca/news/technology/great-pacific-garbage-patch-1.4582626

 

Microplastics found in 93% of bottled water tested in global study

The bottled water industry is estimated to be worth nearly $200 billion a year, surpassing sugary sodas as the most popular beverage in many countries. But its perceived image of cleanliness and purity is being challenged by a global investigation that found the water tested is often contaminated with microplastics, tiny particles of plastic.

“Our love affair with making single-use disposable plastics out of a material that lasts for literally centuries — that’s a disconnect, and I think we need to rethink our relationship with that,” says Prof. Sherri Mason, a microplastics researcher who carried out the laboratory work at the State University of New York (SUNY).

The research was conducted on behalf of Orb Media, a U.S-based non-profit journalism organization with which CBC News has partnered.

… Mason’s team tested 259 bottles of water purchased in nine countries (none were bought in Canada). Though many brands are sold internationally, the water source, manufacturing and bottling process for the same brand can differ by country.The 11 brands tested include the world’s dominant players — Nestle Pure Life, Aquafina, Dasani, Evian, San Pellegrino and Gerolsteiner — as well as major national brands across Asia, Africa, Europe and the Americas.

Researchers found 93% of all bottles tested contained some sort of microplastic, including polypropylene, polystyrene, nylon and polyethylene terephthalate (PET).

10.4 particles/litre on average

Microplastics (anything smaller than five millimetres in size) are the result of the breakdown of all the plastic waste that makes its way into landfills and oceans. They are also manufactured intentionally, as microbeads used in skin care products. Microbeads [in cosmetics] are now being phased out in Canada, after significant numbers began to appear in the Great Lakes and the tiny particles were found filling the stomachs of fish.

  Scientists used Nile Red fluorescent tagging, an emerging method for the rapid identification of microplastics, as the dye binds to plastic. Scientists put the dyed water through a filter and then viewed samples under a microscope. (Orb Media) 

… Orb found on average there were 10.4 particles of plastic per litre that were 100 microns (0.10 mm) or bigger. This is double the level of microplastics in the tap water tested from more than a dozen countries across five continents, examined in a 2017 study by Orb that looked at similar-sized plastics.

Other, smaller particles were also discovered — 314 of them per litre, on average — which some of the experts consulted about the Orb study believe are plastics but cannot definitively identify.

The amount of particles varied from bottle to bottle: while some contained one, others contained thousands.

The purpose of the study was to establish the presence of the plastics in bottled water.

It’s unclear what the effect of microplastics is on human health, and no previous work has established a maximum safe level of consumption. There are no rules or standards for allowable limits of microplastics in bottled water in Canada, the United States and Europe. Rules and standards for other countries from the study are not known.

Two brands — Nestle and Gerolsteiner — confirmed their own testing showed their water contained microplastics, albeit at much lower levels than what Orb Media is reporting.

The water tested was purchased in the U.S., Kenya, China, Brazil, India, Indonesia, Lebanon, Mexico and Thailand, and represented a range of brands across several continents. It was shipped to the specialized lab at SUNY in Fredonia, N.Y.

Emerging science

Plastics are present nearly everywhere and can take hundreds of years to degrade, if at all. Many types only continue to break down into smaller and smaller particles, until they are not visible to the naked eye.

Plastics have also been known to act like a sponge, and can absorb and release chemicals that could be harmful if consumed by mammals and fish.

“It’s not straightforward,” said Prof. Max Liboiron of Memorial University in St John’s. “If you’ve ever had chili or spaghetti and you put it in Tupperware, and you can’t scrub the orange colour out, that’s a manifestation of how plastics absorb oily chemicals,” says Liboiron, director of the Civic Laboratory for Environmental Action Research (CLEAR), which monitors plastic pollution.

The European Food Safety Authority suggests most microplastics will be excreted by the body. But the United Nations Food and Agriculture Organization has raised concerns about the possibility some particles could be small enough to pass into the bloodstream and organs.

It’s not clear how the plastic is getting into the bottled water — whether it’s the water source itself or the air or the manufacturing and bottling process.  “Even the simple act of opening the cap could cause plastic to be chipping off the cap,” Mason said.

  Prof. Sherri Mason carried out the laboratory work at the State University of New York (SUNY), on behalf of Orb Media. (Dave MacIntosh/CBC)

… There are no rules or standards for allowable limits of microplastics in bottled water in Canada, the United States and Europe. Rules and standards for other countries from the study are not known.
FEATURED IMAGE:
Microplastics are the result of the breakdown of all the plastic waste that makes its way into landfills and oceans. The purpose of the study was to establish the presence of the plastics in bottled water. (Fred Dufour/AFP/Getty Images)
READ FULL ARTICLE AT:

Microplastics found in supermarket fish, shellfish

Researchers say it’s too soon to say what impact this has on food safety

Brandie Weikle, CBC News, 

 

SEE ALSO:

Sea salt around the world is contaminated by plastic, studies show

Seafood eaters ingest up to 11,000 plastic particles every year

 

This plastic bottle is one of the many items of plastic floating in the Pacific Ocean along with huge amounts of microplastic

15-Year Study Indicates Huge Increase in Pacific Ocean Microplastic

Results show rapid increase in microplastic in the oceans.

Charles Moore, who first sailed the so-called Great Pacific Garbage Patch in 1997, has returned five times over 15 years to document the concentrations of plastic in the ocean.  His results show microplastics are accumulating at a rapid rate.

In 1997, sailboat captain Charles Moore sailed from Hawaii across the Pacific Ocean, taking a shortcut to his home port of Los Angeles after a sailing race. As he cut across the then-seldom-sailed stretch of ocean – the swirling North Pacific Gyre – he came upon an enormous accumulation of plastic trash and made it famous. He helped captured the public’s imagination around the problem of marine plastic pollution by writing about the “Great Pacific Garbage Patch.”

In February, two decades after his discovery, he reported a seemingly dramatic 60-fold increase in the tiny pieces of microplastic during his 15 years of study of the now-infamous ocean area. From 1999 to 2014, he and a team of researchers regularly returned to 11 sites across this area with Algalita, the nonprofit he founded, scooping up plastic samples using a manta trawl from Moore’s research catamaran in an attempt to quantify change in plastic over time.

His findings, he said in a press conference at the American Geophysical Union’s 2018 Ocean Sciences meeting in Portland, Oregon, show that the tiny pieces of microplastic floating on the surface of the North Pacific Gyre have increased from 331,809 pieces per square kilometer counted in 1999 to 19,912,037 counted in 2014. This estimate is unique as there are no long-term studies documenting microplastic concentration increases in the North Pacific Gyre. That’s because scientists need an enormous number of samples to come to any conclusion about how concentrations change over time.

     

Moore’s research ship, Alguita, returns with these samples after four months in the North Pacific Ocean. Algalita Marine Research and Education has been studying ocean plastic pollution since 1999. Long Beach, CA, USA. (Citizen of the Planet/Education Images/UIG via Getty Images)

However, there is also plenty of uncertainty in making these kinds of estimates. The center of the North Pacific’s swirling mass of water, which holds the highest plastic concentration, appears to be shifting over time, making accurate sampling more challenging. At the meeting, Moore clicked through slides of the North Pacific Gyre, modeled by Nikolai Maximenko and Jan Hafner at the University of Hawaii. The slides showed that the large gyre has a concentrated center that has shifted over time closer to the California coast.

“The gyre is not a static place and what our hypothesis is … was the amount of plastic sampled depends on how far it is from the moving center of the Garbage Patch,” Moore said. The results of his research will be published later this year.

While the North Pacific Gyre is commonly referred to as the “Great Pacific Garbage Patch,” now Moore and other scientists like to describe the area instead as a soup filled with various-sized pieces of plastic debris. Although the patch is certainly enormous, its exact size is difficult to pinpoint because it is always shifting between the coasts of Hawaii and California, with a highly concentrated center that moves seasonally and over time with changing ocean conditions.

When making their calculations about the amount of plastic in the gyre, Maximenko and Hafner developed models that helped correct variability in ocean conditions due to currents, winds and waves. These factors can push plastic pieces down temporarily beneath the surface where they aren’t scooped up by researchers’ plastic trawling equipment, which only skims the ocean’s surface. Even when using these models, the amount of plastic still increased by a significant amount, Moore said.

Marcus Eriksen, marine plastic researcher and co-founder of ocean conservation organization 5 Gyres, said that while Moore’s study is an interesting analysis, he questions how accurate it could be because of how many plastic samples are needed to draw a conclusion about trends. In 2014, using the same trawl-sampling techniques as Moore, Eriksen co-authored a study estimating that globally at least 5.25 trillion plastic pieces are floating at or near the ocean’s surface – with nearly two trillion in the North Pacific Ocean alone. Moore, citing his data, believes that study’s estimates for the North Pacific numbers may be an underestimate.

“In my experience, if you sample the same spot one hour later, you’ll likely find a significant difference in plastic count and weight,” said Eriksen. “While the authors are probably correct about an increasing trend – and it is also difficult to understand the influence of the 2011 Japan tsunami event – we need more samples over time to really understand what’s going on.”

Moore acknowledges the variability in sampling for plastic in the North Pacific Gyre, and agrees on a need for more samples. But he emphasized that what’s certain is that the amount of plastic in the oceans, particularly microplastic, is increasing as humans increase their production of the material.

“Our plastic production will triple by 2050 and that’s when it’s predicted to be half-plastic, half-fish in the ocean” by weight, said Moore, citing a plastic impact estimate published by the World Economic Forum. “But we’re continuing to extract more and more fish, we’re making more and more fish sick, we’re catching more and more fish in ghost nets … so the estimate of half-plastic, half-fish by 2050 may be optimistic.”

SOURCE:

15-Year Study Indicates Huge Increase in Pacific Ocean Microplastics

By Erica Cirino, News Deeply – Oceans Deeply, February 13, 2018

 

 

Microplastics ‘pose major threat’ to whales and sharks, scientists warn

The oceans’ largest creatures are eating large quantities of plastic fragments and other microplastics, exposing them to toxic chemicals.

Even the largest marine creatures are vulnerable to tiny fragments of plastic littering the world’s oceans. A new study has found whales and whale sharks – the largest fish in the world – are ingesting microplastics in alarming quantities.

These creatures are filter feeders, meaning they consume large quantities of small prey by straining them out of the ocean water.  In the process, they swallow hundreds to thousands of cubic metres of water daily, meaning there is the potential for them to take in substantial amounts of microplastic floating in the water.

 Whale sharks are ingesting hundreds of pieces of plastic every day, according to new research
 Whale sharks are ingesting hundreds of pieces of plastic every day, according to new research ( Getty )

“Our studies on whale sharks in the Sea of Cortez and on fin whales in the Mediterranean Sea confirmed exposure to toxic chemicals, indicating that these filter feeders are taking up microplastics in their feeding grounds,” said Professor Maria Cristina Fossi of the University of Siena.

Microplastics are small pieces of plastic less than 5mm in size. Some microplastics are manufactured, such as the microbeads added to health and beauty products, while others are the result of larger plastics gradually breaking down.  These plastics are pervasive in marine environments, and they are known to harbour toxic substances such as heavy metals and phthalates.

Since many animals are known to eat microplastics, scientists are concerned about the toxic substances contained within them, as well as their capacity to accumulate within the animals and stop them from absorbing nutrients correctly. “Exposure to these plastic-associated toxins pose a major threat to the health of these animals since it can alter the hormones, which regulate the body’s growth and development, metabolism, and reproductive functions, among other things,” said Professor Fossi.

The study was published in the journal Trends in Ecology & Evolution.

. . . While scientists agree that plastic pollution is a problem for marine animals, there is still a lot they do not know about the magnitude of its impact.

“Despite the growing research on microplastics in the marine environment, there are only few studies that examine the effects on large filter feeders,” said Elitza Germanov, a researcher at the Marine Megafauna Foundation and lead author of the study.

Assessing plastic in the diets of large animals such as whales and whale sharks is difficult, as it relies on analysis of stomach contents. However, by taking tissue samples from living animals, the scientists were able to test for the presence of toxic chemicals from microplastics in their bodies.

The researchers also estimated the numbers of plastic fragments being ingested daily by whales and whale sharks. While they thought whale sharks were likely eating nearly 200 items per day, the fin whales’ plastic consumption numbered in the thousands.

Many giant filter feeders are already listed as endangered, and often their feeding grounds overlap with some of the world’s worst pollution hotspots.

“It has become clear though that microplastic contamination has the potential to further reduce the population numbers of these species, many of which are long-lived and have few offspring throughout their lives,” said Ms Germanov.

 

By Josh Gabbatis, Science Correspondent, The Independent

February 5, 2018

https://www.independent.co.uk/environment/microplastics-ocean-pollution-whales-sharks-threat-plastic-coffee-cups-microbeads-a8194131.html

A third of coral reefs entangled with plastic

Plastic is one of the biggest threats to the future of coral reefs after ocean warming, say scientists.

More than 11 billion items of plastic were found on a third of coral reefs surveyed in the Asia-Pacific region.

This figure is predicted to increase to more than 15 billion by 2025.

Plastic raises by 20-fold the risk of disease outbreaks on coral reefs, according to research. Plastic bags, bottles and rice sacks were among the items found.

“Plastic is one of the biggest threats in the ocean at the moment, I would say, apart from climate change,” said Dr Joleah Lamb of Cornell University in Ithaca, US.

“It’s sad how many pieces of plastic there are in the coral reefs …if we can start targeting those big polluters of plastic, hopefully we can start reducing the amount that is going on to these reefs.”

  

Infected coral snagged in plastic. Photo: Joleah Lamb.  Plastic floating over corals. Photo: Kathryn Berry

Precious resource

More than 275 million people rely on coral reefs for food, coastal protection, tourism income, and cultural importance.

It’s thought that plastic allows diseases that prey on the marine invertebrates that make-up coral reefs to flourish. Branching or finger-like forms of corals are most likely to get entangled in plastic debris.

These are important habitats for fish and fisheries, the scientists say.

“A lot of times we come across big rice sacks or draping plastic bags,” said Dr Lamb, who led the study.

“What we do find is these corals with a lot of complexity like branches and finger-like corals will become eight times more likely to be entangled in these types of plastics.”

In the study, published in the journal Science, international researchers surveyed more than 150 reefs from four countries in the Asia-Pacific region between 2011 and 2014.

Plastic was found on one-third of the coral reefs surveyed. Reefs near Indonesia were loaded with most plastic, while Australian reefs showed the lowest concentration. Thailand and Myanmar were in the middle.

“The country’s estimated amount of mismanaged plastics – so the way they deal with their plastic waste – was a strong predictor of how much we would see on the reef,” said Dr Lamb.

  Plastic debris on the beach in Sulawesi, Indonesia. Photo: Joleah Lamb

Coral reefs face many threats. Coral bleaching is caused by unusually warm water. Coral polyps loose algae from their tissues, which drains them of their colour. They may recover if temperature changes are reversed in a reasonably short time, but this process can take many years.

In the case of diseases, organisms attack coral, leading to likely death. Previous research has found that plastic debris can stress coral through blocking out light and oxygen, thereby giving pathogens a chance to take hold.

Based on projections of plastic waste going into the ocean, the researchers suggest that the number of plastic items snagged on Asia-Pacific corals may increase from 11.1 billion to 15.7 billion plastic items by 2025.

An estimated 4.8 to 12.7 million tonnes of plastic waste enter the ocean in a single year.

More than three-quarters of this plastic is thought to originate on land.

Featured image: Plastic bottle wedged in the coral reef. Photo: Kathryn Berry

A third of coral reefs ‘entangled with plastic’

http://www.bbc.com/news/science-environment-42821004